Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.430
Filtrar
1.
Radiat Environ Biophys ; 63(2): 185-194, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565701

RESUMO

This paper describes events of anomalously high energy transfer to a micro-object by fragments of nuclei generated in nuclear interactions in the environment on board a spacecraft in flight in low-Earth orbit. An algorithm has been developed that allows for the calculation of the absorbed energy from one or more fragments - products of nuclear interaction. With this algorithm the energy distributions for a spherical micro-volume in an aqueous medium were calculated. And the resulting absorbed energy spectra from nuclear fragments and from primary cosmic rays were compared. The role of nuclear interactions in events of large energy transfers in micro-objects in the field of primary cosmic radiation has been evaluated. The calculations performed in this study showed that the energy in a micro-volume from nuclear events can be several times higher compared to the energy imparted by primary space radiation.


Assuntos
Radiação Cósmica , Transferência de Energia , Algoritmos , Astronave , Voo Espacial
2.
Radiat Environ Biophys ; 63(2): 263-269, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38668870

RESUMO

This work investigates the impact on cosmic ray exposures to aircrew due to changing flight routes operated in the context of the recent conflict between Ukraine and the Russian Federation. All analyses were done based on Paris-Tokyo and Tokyo-Paris flights taken as examples, and differences in radiation exposures were quantified by comparing the situation before and after the beginning of the conflict. Regarding space weather scenarios, a quiet solar period and an extreme solar event (ground level enhancement (GLE) 5) were considered in the study. Analyses showed that the new Paris-Tokyo flight route established after the beginning of the conflict results in a smaller radiation dose to aircrew than that operated before the conflict, particularly during solar events. In contrast, for Tokyo-Paris flights the new high-latitude route crossing the Atlantic Ocean and North America increases the dose significantly (+ 50% in the worst case). Although this analysis is limited only to flights connecting Paris and Tokyo, it allowed for an evaluation of the consequences of new routes (particularly polar ones) on ambient dose equivalent values.


Assuntos
Radiação Cósmica , Ucrânia , Federação Russa , Humanos , Exposição Ocupacional/análise , Aeronaves , Conflitos Armados , Doses de Radiação , Monitoramento de Radiação
3.
Life Sci Space Res (Amst) ; 41: 166-170, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670643

RESUMO

In this paper we recommend an appropriate compensation approach should be established for fatality and disabilities that may occur due to space radiation exposures of government or industry workers. A brief review of compensation approaches for nuclear energy and nuclear weapons development workers in the United States and other countries is described. We then summarize issues in the application of probability of causation calculation and provide examples of probability of causation (PC) calculations for missions to the International Space Station and Earth's moon or for Mars exploration. The main focus of this paper follows with a recommendation of a no-fault approach to compensation with the creation of appropriate insurance policies funded by employers to cover all disabilities or fatality, without requiring proof of causation or restriction to conditions that imply causation. Importantly we propose that the compensation described should be managed by recourse to private insurers.


Assuntos
Voo Espacial , Humanos , Exposição Ocupacional , Radiação Cósmica/efeitos adversos , Estados Unidos , Lesões por Radiação/etiologia , Lesões por Radiação/economia , Exposição à Radiação/efeitos adversos , Compensação e Reparação
4.
Life Sci Space Res (Amst) ; 41: 119-126, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670638

RESUMO

The risk posed by prolonged exposure to space radiation represents a significant obstacle to long-duration human space exploration. Of the ion species present in the galactic cosmic ray spectrum, relativistic protons are the most abundant and as such are a relevant point of interest with regard to the radiation protection of space crews involved in future long-term missions to the Moon, Mars, and beyond. This work compared the shielding effectiveness of a number of standard and composite materials relevant to the design and development of future spacecraft or planetary surface habitats. Absorbed dose was measured using Al2O3:C optically stimulated luminescence dosimeters behind shielding targets of varying composition and depth using the 1 GeV nominal energy proton beam available at the NASA Space Radiation Laboratory at the Brookhaven National Laboratory in New York. Absorbed dose scored from computer simulations performed using the multi-purpose Monte Carlo radiation transport code FLUKA agrees well with measurements obtained via the shielding experiments. All shielding materials tested and modeled in this study were unable to reduce absorbed dose below that measured by the (unshielded) front detector, even after depths as large as 30 g/cm2. These results could be noteworthy given the broad range of proton energies present in the galactic cosmic ray spectrum, and the potential health and safety hazard such space radiation could represent to future human space exploration.


Assuntos
Radiação Cósmica , Método de Monte Carlo , Prótons , Proteção Radiológica , Voo Espacial , Proteção Radiológica/instrumentação , Proteção Radiológica/métodos , Humanos , Radiação Cósmica/efeitos adversos , Doses de Radiação , Astronave , Simulação por Computador
5.
Life Sci Space Res (Amst) ; 41: 210-217, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670649

RESUMO

In addition to the continuous exposure to cosmic rays, astronauts in space are occasionally exposed to Solar Particle Events (SPE), which involve less energetic particles but can deliver much higher doses. The latter can exceed several Gy in a few hours for the most intense SPEs, for which non-stochastic effects are thus a major concern. To identify adequate shielding conditions that would allow respecting the dose limits established by the various space agencies, the absorbed dose in the considered organ/tissue must be multiplied by the corresponding Relative Biological Effectiveness (RBE), which is a complex quantity depending on several factors including particle type and energy, considered biological effect, level of effect (and thus absorbed dose), etc. While in several studies only the particle-type dependence of RBE is taken into account, in this work we developed and applied a new approach where, thanks to an interface between the FLUKA Monte Carlo transport code and the BIANCA biophysical model, the RBE dependence on particle energy and absorbed dose was also considered. Furthermore, we included in the considered SPE spectra primary particles heavier than protons, which in many studies are neglected. This approach was then applied to the October 2003 SPE (the most intense SPE of solar cycle 23, also known as "Halloween event") and the January 2005 event, which was characterized by a lower fluence but a harder spectrum, i.e., with higher-energy particles. The calculation outcomes were then discussed and compared with the current dose limits established for skin and blood forming organs in case of 30-days missions. This work showed that the BIANCA model, if interfaced to a radiation transport code, can be used to calculate the RBE values associated to Solar Particle Events. More generally, this work emphasizes the importance of taking into account the RBE dependence on particle energy and dose when calculating equivalent doses.


Assuntos
Radiação Cósmica , Eficiência Biológica Relativa , Atividade Solar , Radiação Cósmica/efeitos adversos , Humanos , Voo Espacial , Método de Monte Carlo , Astronautas , Doses de Radiação
6.
Life Sci Space Res (Amst) ; 41: 29-42, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670650

RESUMO

During a human mission to Mars, astronauts would be continuously exposed to galactic cosmic rays (GCR) consisting of high energy protons and heavier ions coming from outside our solar system. Due to their high energy, GCR ions can penetrate spacecraft and space habitat structures, directly reaching human organs. Additionally, they generate secondary particles when interacting with shielding materials and human tissues. Baryon secondaries have been the focus of many previous studies, while meson and lepton secondaries have been considered to a much lesser extent. In this work, we focus on assessing the tissue-specific dose equivalents and the effective dose for males of secondary mesons and leptons for the interplanetary cruise phase and the surface phase on Mars. We also provide the energy distribution of the secondary pions in each human organ since they are dominant compared to other mesons and leptons. For this calculation, the PHITS3.27 Monte Carlo simulation toolkit is used to compute the energy spectra of particles in organs in a realistic human phantom. Based on the simulation data, the dose equivalent has been estimated with radiation quality factors in ICRP Publication 60 and in the latest NASA Space Cancer Risk model (NSCR-2022). The effective dose is then assessed with the tissue weighting factors in ICRP Publication 103 and in the NSCR model, separately. The results indicate that the contribution of secondary mesons and leptons to the total effective dose is 6.1 %, 9.1 %, and 11.3 % with the NSCR model in interplanetary space behind 5, 20, and 50 g/cm2 aluminum shielding, respectively, with similar values using the ICRP model. The outcomes of this work lead to an improved understanding of the potential health risks induced by secondary particles for exploration missions to Mars and other destinations.


Assuntos
Radiação Cósmica , Marte , Doses de Radiação , Voo Espacial , Radiação Cósmica/efeitos adversos , Humanos , Astronautas , Método de Monte Carlo , Masculino
7.
Life Sci Space Res (Amst) ; 41: 52-55, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670652

RESUMO

The health risk of staying in space is a well-known fact, and the radiation doses to the astronauts must be monitored. The Pille-ISS thermoluminescent dosimeter system is present on the International Space Station (ISS) since 2003. We present an analysis of 60000 data points over 19 years from the 90 min automatic measurements and show a 4-day-long segment of 15 min measurements. In the case of the 15 min we show that the mapping of the radiation environment for the orbit of the ISS is possible with the Pille system. From our results the dose rates inside the South Atlantic Anomaly (SAA) are at least 1 magnitude higher than outside. From the 90 min data, we select orbits passing through the SAA. A statistical correlation in the SAA between the ISS altitude and monthly mean dose rate is presented with the Spearman correlation value of ρSAA=0.56. The dose rate and the sunspot number show strong inverse Pearson correlation (R2=-0.90) at a given altitude.


Assuntos
Astronautas , Astronave , Dosimetria Termoluminescente , Astronave/instrumentação , Dosimetria Termoluminescente/instrumentação , Dosimetria Termoluminescente/métodos , Humanos , Doses de Radiação , Monitoramento de Radiação/instrumentação , Monitoramento de Radiação/métodos , Radiação Cósmica , Voo Espacial
8.
Life Sci Space Res (Amst) ; 41: 43-51, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670651

RESUMO

Prolonged manned space flight exposure risks to galactic comic radiation, has led to uncertainties in a variety of health risks. Our previous work, utilizing either single ion or multiple ion radiation exposure conducted at the NSRL (NASA Space Radiation Laboratory, Brookhaven, NY) demonstrated that HZE ion components of the GCR result in persistent inflammatory signaling, increased mutations, and higher rates of cancer initiation and progression. With the development of the 33-beam galactic cosmic radiation simulations (GCRsim) at the NSRL, we can more closely test on earth the radiation environment found in space. With a previously used lung cancer susceptible mouse model (K-rasLA-1), we performed acute exposure experiments lasting 1-2 h, and chronic exposure experiments lasting 2-6 weeks with a total dose of 50 cGy and 75 cGy. We obtained histological samples from a subset of mice 100 days post-irradiation, and the remaining mice were monitored for overall survival up to 1-year post-irradiation. When we compared acute exposures (1-2 hrs.) and chronic exposure (2-6 weeks), we found a trend in the increase of lung adenocarcinoma respectively for a total dose of 50 cGy and 75 cGy. Furthermore, when we added neutron exposure to the 75 cGy of GCRsim, we saw a further increase in the incidence of adenocarcinoma. We interpret these findings to suggest that the risks of carcinogenesis are heightened with doses anticipated during a round trip to Mars, and this risk is magnified when coupled with extra neutron exposure that are expected on the Martian surface. We also observed that risks are reduced when the NASA official 33-beam GCR simulations are provided at high dose rates compared to low dose rates.


Assuntos
Radiação Cósmica , Progressão da Doença , Neoplasias Pulmonares , Neoplasias Induzidas por Radiação , Animais , Radiação Cósmica/efeitos adversos , Camundongos , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/patologia , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/patologia , Voo Espacial , Feminino , Masculino
9.
Life Sci Space Res (Amst) ; 41: 74-79, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670655

RESUMO

Future NASA missions will require astronauts to travel farther and spend longer durations in space than ever before. This will also expose astronauts to longer periods of several physical and psychological challenges, including exposure to space radiation (SR) and periods of social isolation (SI), which could have unknown negative effects on physical and mental health. Each also has the potential to negatively impact sleep which can reduce the ability to cope with stressful experiences and lead to sensorimotor, neurocognitive, and physical deficits. The effects of SI and SR on gross motor performance has been shown to vary, and depend on, individual differences in stress resilience and vulnerability based on our established animal model in which stress produces different effects on sleep. In this study, the impact that SI and SR, either alone or together, had on fine motor skill performance (bilateral tactile adhesive removal task (BTAR)) was assessed in male rats. We also examined emotional, exploratory, and other off-task behavioral responses during testing and assessed whether sensorimotor performance and emotion varied with individual differences in resilience and vulnerability. BTAR task performance was differentially impacted by SI and SR, and were further influenced by the stress resilience/vulnerability phenotype of the rats. These findings further demonstrate that identifying individual responses to stressors that can impact sensorimotor ability and behavior necessary to perform mission-related tasks will be of particular importance for astronauts and future missions. Should similar effects occur in humans, there may be considerable inter-individual variability in the impact that inflight stressors have on astronauts and their ability to perform mission-related tasks.


Assuntos
Comportamento Animal , Radiação Cósmica , Destreza Motora , Isolamento Social , Animais , Radiação Cósmica/efeitos adversos , Masculino , Ratos , Destreza Motora/efeitos da radiação , Comportamento Animal/efeitos da radiação , Estresse Psicológico , Voo Espacial
10.
Radiat Prot Dosimetry ; 200(7): 640-647, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38648184

RESUMO

According to UNSCEAR, cosmic radiation contributes to ~16% (0.39 mSv/y) of the total dose received by the public at sea level. The exposure to cosmic rays at a specific location is therefore a non-negligible parameter that contributes to the assessment of the overall public exposure to radiation. In this study, simulations were conducted with the Particle and Heavy Ion Transport code System, a Monte Carlo code, to determine the fluxes and effective dose due to cosmic rays received by the population of Douala. In minimum solar activity, the total effective dose considering the contribution of neutron, muon+, muon-, electron, positron and photon, was found to be 0.31 ± 0.02 mSv/y at the ground level. For maximum solar activity, it was found to be 0.27 ± 0.02 mSv/y at ground level. During maximum solar activity, galactic cosmic rays are reduced by solar flares and winds, resulting in an increase in the solar cosmic-ray component and a decrease in the galactic cosmic-ray component on Earth. This ultimately leads to a decrease in the total cosmic radiation on Earth. These results were found to be smaller than the UNSCEAR values, thus suggesting a good estimation for the population of Douala city located near the equatorial line. In fact, the cosmic radiation is more deflected at the equator than near the pole. Muons+ were found to be the main contributors to human exposure to cosmic radiation at ground level, with ~38% of the total effective dose due to cosmic exposure. However, electrons and positrons were found to be the less contributors to cosmic radiation exposure. As regards the obtained results, the population of Douala is not significantly exposed to cosmic radiation.


Assuntos
Radiação Cósmica , Íons Pesados , Método de Monte Carlo , Doses de Radiação , Monitoramento de Radiação , Humanos , Camarões , Monitoramento de Radiação/métodos , Atividade Solar , Simulação por Computador , Exposição à Radiação/análise
11.
Free Radic Biol Med ; 219: 88-103, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38631648

RESUMO

This review explores the convergence of clinical radiotherapy and space radiation therapeutics, focusing on ionizing radiation (IR)-generated reactive oxygen species (ROS). IR, with high-energy particles, induces precise cellular damage, particularly in cancer treatments. The paper discusses parallels between clinical and space IR, highlighting unique characteristics of high-charge and energy particles in space and potential health risks for astronauts. Emphasizing the parallel occurrence of ROS generation in both clinical and space contexts, the review identifies ROS as a crucial factor with dual roles in cellular responses and potential disease initiation. The analysis covers ROS generation mechanisms, variations, and similarities in terrestrial and extraterrestrial environments leading to innovative ROS-responsive delivery systems adaptable for both clinical and space applications. The paper concludes by discussing applications of personalized ROS-triggered therapeutic approaches and discussing the challenges and prospects of implementing these strategies in clinical radiotherapy and extraterrestrial missions. Overall, it underscores the potential of ROS-targeted delivery for advancing therapeutic strategies in terrestrial clinical settings and space exploration, contributing to human health improvement on Earth and beyond.


Assuntos
Neoplasias , Espécies Reativas de Oxigênio , Voo Espacial , Espécies Reativas de Oxigênio/metabolismo , Humanos , Neoplasias/radioterapia , Neoplasias/metabolismo , Radioterapia/métodos , Radiação Cósmica , Radiação Ionizante , Animais , Astronautas
12.
Int J Radiat Biol ; 100(5): 777-790, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38471034

RESUMO

PURPOSE: To identify sensitive genes for space radiation, we integrated the transcriptomic samples of spaceflight mice from GeneLab and predicted the radiation doses absorbed by individuals in space. METHODS AND MATERIALS: A single-sample network (SSN) for each individual sample was constructed. Then, using machine learning and genetic algorithms, we built the regression models to predict the absorbed dose equivalent based on the topological structure of SSNs. Moreover, we analyzed the SSNs from each tissue and compared the similarities and differences among them. RESULTS: Our model exhibited excellent performance with the following metrics: R2=0.980, MSE=6.74e-04, and the Pearson correlation coefficient of 0.990 (p value <.0001) between predicted and actual values. We identified 20 key genes, the majority of which had been proven to be associated with radiation. However, we uniquely established them as space radiation sensitive genes for the first time. Through further analysis of the SSNs, we discovered that the different tissues exhibited distinct mechanisms in response to space stressors. CONCLUSIONS: The topology structures of SSNs effectively predicted radiation doses under spaceflight conditions, and the SSNs revealed the gene regulatory patterns within the organisms under space stressors.


Assuntos
Radiação Cósmica , Voo Espacial , Animais , Camundongos , Radiação Cósmica/efeitos adversos , Doses de Radiação , Relação Dose-Resposta à Radiação , Aprendizado de Máquina , Redes Reguladoras de Genes/efeitos da radiação , Transcriptoma/efeitos da radiação
13.
Sci Rep ; 14(1): 7334, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409284

RESUMO

Exposure to cosmic ionizing radiation is an innate risk of the spaceflight environment that can cause DNA damage and altered cellular function. In astronauts, longitudinal monitoring of physiological systems and interactions between these systems are important to consider for mitigation strategies. In addition, assessments of sex-specific biological responses in the unique environment of spaceflight are vital to support future exploration missions that include both females and males. Here we assessed sex-specific, multi-system immune and endocrine responses to simulated cosmic radiation. For this, 24-week-old, male and female C57Bl/6J mice were exposed to simplified five-ion, space-relevant galactic cosmic ray (GCRsim) radiation at 15 and 50 cGy, to simulate predicted radiation exposures that would be experienced during lunar and Martian missions, respectively. Blood and adrenal tissues were collected at 3- and 14-days post-irradiation for analysis of immune and endocrine biosignatures and pathways. Sexually dimorphic adrenal gland weights and morphology, differential total RNA expression with corresponding gene ontology, and unique immune phenotypes were altered by GCRsim. In brief, this study offers new insights into sexually dimorphic immune and endocrine kinetics following simulated cosmic radiation exposure and highlights the necessity for personalized translational approaches for astronauts during exploration missions.


Assuntos
Radiação Cósmica , Marte , Voo Espacial , Camundongos , Masculino , Feminino , Animais , Meio Ambiente Extraterreno , Caracteres Sexuais , Radiação Ionizante , Astronautas , Radiação Cósmica/efeitos adversos , Imunidade
14.
Sci Rep ; 14(1): 1324, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225252

RESUMO

Despite surging interest in space travel in recent decades, the impacts of prolonged, elevated exposure to galactic cosmic radiation (GCR) on human health remain poorly understood. This form of ionizing radiation causes significant changes to biological systems including damage to DNA structure by altering epigenetic phenotype with emphasis on DNA methylation. Building on previous work by Kennedy et al. (Sci Rep 8(1): 6709. 10.1038/S41598-018-24755-8), we evaluated spatial DNA methylation patterns triggered by high-LET (56Fe, 28Si) and low-LET (X-ray) radiation and the influence of chromosome positioning and epigenetic architecture in distinct radial layers of cell nucleus. Next, we validated our results using gene expression data of mice irradiated with simulated GCR and JAXA astronauts. We showed that primarily 56Fe induces a persistent DNA methylation increase whereas 28Si and X-ray induce a decrease DNA methylation which is not persistent with time. Moreover, we highlighted the role of nuclear chromatin architecture in cell response to external radiation. In summary, our study provides novel insights towards epigenetic and transcriptomic response as well as chromatin multidimensional structure influence on galactic cosmic radiation damage.


Assuntos
Radiação Cósmica , Humanos , Camundongos , Animais , Radiação Cósmica/efeitos adversos , Metilação de DNA , Posicionamento Cromossômico , Epigênese Genética , Cromatina/genética
15.
Life Sci Space Res (Amst) ; 40: 1-7, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245334

RESUMO

In this paper we use the NASA Space Cancer Risk (NSCR version 2022) model to predict cancer and circulatory disease risks using energy spectra representing the largest SPE's observed in the space age. Because tissue dose-rates behind shielding for large SPE's lead to low dose-rates (<0.2 Gy/h) we consider the integrated risk for several historical periods of high solar activity, including July-November, 1960 events and August-October 1989 events along with the February 1956 and August 1972 events. The galactic cosmic ray (GCR) contribution to risks is considered in predictions. Results for these largest historical events show risk of exposure induced death (REID) are mitigated to < 1.2 % with a 95 % confidence interval with passive radiation shielding of 20 g/cm2 aluminum, while larger amounts would support the application of the ALARA principle. Annual GCR risks are predicted to surpass the risks from large SPEs by ∼30 g/cm2 of aluminum shielding.


Assuntos
Radiação Cósmica , Neoplasias , Voo Espacial , Humanos , Atividade Solar , Radiação Cósmica/efeitos adversos , Alumínio , Neoplasias/epidemiologia , Neoplasias/etiologia , Doses de Radiação
16.
Life Sci Space Res (Amst) ; 40: 166-175, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245342

RESUMO

Future space travel to the earth's moon or the planet Mars will likely lead to the selection of experienced International Space Station (ISS) or lunar crew persons for subsequent lunar or mars missions. Major concerns for space travel are galactic cosmic ray (GCR) risks of cancer and circulatory diseases. However large uncertainties in risk prediction occur due to the quantitative and qualitative differences in heavy ion microscopic energy deposition leading to differences in biological effects compared to low LET radiation. In addition, there are sparse radiobiology data and absence of epidemiology data for heavy ions and other high LET radiation. Non-targeted effects (NTEs) are found in radiobiology studies to increase the biological effectiveness of high LET radiation at low dose for cancer related endpoints. In this paper the most recent version of the NASA Space Cancer Risk model (NSCR-2022) is used to predict mission risks while considering NTEs in solid cancer risk predictions. I discuss predictions of space radiation risks of cancer and circulatory disease mortality for US Whites and US Asian-Pacific Islander (API) populations for 6-month ISS, 80-day lunar missions, and combined ISS-lunar mission. Model predictions suggest NTE increase cancer risks by about ∼2.3 fold over a model that ignores NTEs. US API are predicted to have a lower cancer risks of about 30% compared to US Whites. Cancer risks are slightly less than additive for multiple missions, which is due to the decease of risk with age of exposure and the increased competition with background risks as radiation risks increase. The inclusion of circulatory risks increases mortality estimates about 25% and 37% for females and males, respectively in the model ignoring NTEs, and 20% and 30% when NTEs are assumed to modify solid cancer risk. The predictions made here for combined ISS and lunar missions suggest risks are within risk limit recommendations by the National Council on Radiation Protection and Measurements (NCRP) for such missions.


Assuntos
Radiação Cósmica , Neoplasias Induzidas por Radiação , Voo Espacial , Masculino , Feminino , Humanos , Astronautas , Lua , Radiação Cósmica/efeitos adversos , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Induzidas por Radiação/etiologia , Doses de Radiação
17.
Radiat Res ; 201(2): 93-103, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171489

RESUMO

The pervasiveness of deep space radiation remains a confounding factor for the transit of humans through our solar system. Spacecraft shielding both protects astronauts but also contributes to absorbed dose through galactic cosmic ray interactions that produce secondary particles. The resultant biological effects drop to a minimum for aluminum shielding around 20 g/cm2 but increase with additional shielding. The present work evaluates for the first time, the impact of secondary pions on central nervous system functionality. The fractional pion dose emanating from thicker shielded spacecraft regions could contribute up to 10% of the total absorbed radiation dose. New results from the Paul Scherrer Institute have revealed that low dose exposures to 150 MeV positive and negative pions, akin to a Mars mission, result in significant, long-lasting cognitive impairments. These surprising findings emphasize the need to carefully evaluate shielding configurations to optimize safe exposure limits for astronauts during deep space travel.


Assuntos
Radiação Cósmica , Mésons , Proteção Radiológica , Voo Espacial , Humanos , Astronave , Radiação Cósmica/efeitos adversos , Proteção Radiológica/métodos , Astronautas , Cognição , Doses de Radiação
18.
Z Med Phys ; 34(1): 153-165, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37940400

RESUMO

The generation of space radiation on Earth is essential to study and predict the effects of radiation on space travelers, electronics, or materials during future long-term space missions. Next to the heavy ions of the galactic cosmic rays, solar particle events play a major role concerning the radiation risk in space, which consist of intermediate-energy protons with broad spectra and energies up to a few hundred MeV. This work describes an approach for the ground-based generation of solar particle events. As a proof of principle, a passive beam modulator with a specific funnel-shaped periodic structure was designed and is used to convert a monoenergetic proton beam into a spectral proton energy distribution, mimicking a solar particle event from August 1972, which is known as one of the strongest recorded SPE events. The required proton beam of 220 MeV can be generated at many existing particle accelerators at research or particle therapy facilities. The planning, manufacturing and testing of the modulator is described step by step. Its correct manufacturing and the characteristics of the solar particle event simulator are tested experimentally and by means of Monte Carlo simulations. Future modulators will follow the same concept with minor adjustments such as a larger lateral extension. As of now, the presented beam modulator is available to the research community to conduct experiments at GSI for exposure under solar particle event conditions. In addition, researchers can use and apply the described concept to design and print their individualized modulator to reproduce any desired solar particle event spectrum or request the presented modulator geometry from the authors.


Assuntos
Radiação Cósmica , Voo Espacial , Atividade Solar , Prótons , Impressão Tridimensional , Doses de Radiação
19.
Z Med Phys ; 34(1): 14-30, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37507310

RESUMO

The Partner Agencies of the International Space Station (ISS) maintain separate career exposure limits and shared Flight Rules that control the ionising radiation exposures that crewmembers can experience due to ambient environments throughout their space missions. In low Earth orbit as well as further out in space, energetic ions referred to as galactic cosmic radiation (GCR) easily penetrate spacecraft and spacecraft contents and consequently are always present at low dose rates. Protons and electrons that are trapped in the Earth's geomagnetic field are encountered intermittently, and a rare energetic solar particle event (SPE) may expose crew to (mostly) energetic protons. Space radiation protection goals are to optimize radiation exposures to maintain deleterious late effects at known and acceptable levels and to prevent any early effects that might compromise crew health and mission success. The conventional radiation protection metric effective dose provides a basic framework for limiting exposures associated with human spaceflight and can be communicated to all stakeholders. Additional metrics and uncertainty analyses are required to understand more completely and to convey nuanced information about potential impacts to an individual astronaut or to a space mission. Missions to remote destinations well beyond low Earth orbit (BLEO) are upcoming and bestow additional challenges that shape design and radiation protection needs. NASA has recently adopted a more permissive career exposure limit based upon effective dose and new restrictions on mission exposures imposed by nuclear technologies. This manuscript reviews the exposure limits that apply to the ISS crewmembers. This work was performed in collaboration with the advisory and guidance efforts of International Commission on Radiological Protection (ICRP) Task Group 115 and will be summarized in an upcoming ICRP Report.


Assuntos
Radiação Cósmica , Monitoramento de Radiação , Humanos , Doses de Radiação , Prótons , Radiação Cósmica/efeitos adversos , Medição de Risco
20.
Z Med Phys ; 34(1): 111-139, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37225603

RESUMO

Ionizing radiation in general and mixed fields of space radiation in particular pose a risk of serious harm to human health. The risk of such adverse effects increases with the duration of the mission, and for all missions outside the protective properties of the Earth's magnetic field and atmosphere. Accordingly, radiation protection is of central importance for all human spaceflight, which is recognized by all international space agencies. To date various systems, analyze and determine the exposure to ionizing radiation within the environment and to the crew onboard the International Space Station (ISS). In addition to this operational monitoring, experiments and technology demonstrations are carried out. This to further enhance systems capabilities, to prepare for exploratory missions, to the Deep Space Gateway and/or to enable for human presence at other celestial bodies. Subsequently the European Space Agency (ESA) decided early to support the development of an active personal dosimeter. Under the auspices of the European Space Research and Technology Center (ESTEC) together with the European Astronaut Center's (EAC) Medical Operations and Space Medicine (HRE-OM) team, a European industrial consortium was formed to develop, build, and test this system. To complete the ESA Active Dosimeter (EAD) Technology Demonstration in space, EAD components were delivered to ISS with the ESA's space missions 'iriss' and 'proxima' in 2015 and 2016. This marked Phase 1 (2015) and 2 (2016-2017) of the EAD Technology Demonstration to which focus is given in this publication. All EAD systems and their functionalities, the different radiation detector, their properties, and calibrations procedures are described. Emphasis is first on the "iriss" mission of September 2015, that provided a complete set of data for an entire space mission from launch to landing, for the first time. Data obtained during Phase 2 in 2016-2017 are discussed thereafter. Measurements with the active radiation detectors of the EAD system provided data of the absorbed dose, dose equivalent, quality factor as well as the various dose contributions during the crossings of the South Atlantic Anomaly (SAA) and/or resulting from galactic cosmic radiation (GCR). Results of the in-flight cross-calibrations among the internal sensors of the EAD systems are discussed and alternative usage of the EAD Mobile Units as area monitors at various different locations inside the ISS is described.


Assuntos
Radiação Cósmica , Monitoramento de Radiação , Voo Espacial , Humanos , Dosímetros de Radiação , Monitoramento de Radiação/métodos , Astronautas , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...